- Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 10
- Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 2
- Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 1
Topology Optimization: Theory, Methods and Applica-tions FE-Design (2005) TOSCA User's Manual, Topology synthesis of large-displacement compliant mechanisms Jan 20.
Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 10
Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 2
Topology Optimization: Theory, Methods and Applica-tions FE-Design (2005) TOSCA User's Manual, Topology synthesis of large-displacement compliant mechanisms Jan 20. Luca Furbatto and Giovanni Di Lorenzo (McLaren Racing), Claus B.W. Pedersen (FE-Design GmbH) Abstract: The present work shows non-parametric optimization can be applied for practical Abaqus models using different modules of TOSCA.struc. The first study will show how Abaqus/Standard allows topology optimization of large models with TOSCA.struc.topo.
Fe-design 2005 Tosca User's Manual Fe-design Gmbh Karlsruhe Germany 1
- Bendsøe, M.P. and Sigmund, O. (2003) Topology Optimization: Theory, Methods and Applications, Springer-Verlag, Berlin.Google Scholar
- FE-Design (2005) TOSCA User’s Manual, FE-Design GmbH, Karlsruhe, Germany.Google Scholar
- Pedersen, C.B.W., Buhl, T. and Sigmund, O. (2001) Topology synthesis of large-displacement compliant mechanisms, International Journal for Numerical Methods in Engineering, 50(12), 2683–2706.zbMATHCrossRefGoogle Scholar
- Poulsen, T.A. (2002) A simple scheme to prevent checkerboard patterns and one-node connected hinges in topology optimization, Structural and Multidisciplinary Optimization, 24(5), 396–399.CrossRefGoogle Scholar
- Sigmund, O. and Clausen, P. (2005) Topology optimization using a mixed formulation: An alternative way to solve pressure load problems, submitted.Google Scholar
- Sigmund O. and Petersson J. (1998) Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Structural Optimization, 16(1), 68–75.CrossRefGoogle Scholar
- Svanberg, K. (1987) The method of moving asymptotes — A new method for structural optimization, International Journal for Numerical Methods in Engineering, 24, 359–373.zbMATHMathSciNetCrossRefGoogle Scholar
- Yin, L. and Ananthasuresh, G.K. (2003) Design of distributed compliant mechanisms, Mechanics Based Design of Structures and Machines, 31(2), 151–179.CrossRefGoogle Scholar